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Abstract 

Artificial intelligence (AI) relies heavily on Machine 
Learning (ML).  ML is akin to training a tiny model brain 
(an artificial neural-network) to do specific tasks extremely 
well and extremely fast.  The result of which is a machine-
learned model that can be put to use.  When one or more 
of these models are brought together, aided by 
mathematical algorithms and procedural code, they 
become AI such as: 

 Answering a question, like we see with ChatGPT 

 Identifying a person, like we see with Google Photos 

 Predicting shopping/reading preferences, like we see 
with Facebook 

Introduction 

E&P clients have masses of unstructured data they are 
uncertain of what they have or how to maintain it, 
otherwise known as the data swamp.  Most often, data 
management teams (either internal or external vendors) 
deem these too costly to turn into economical data 
management projects. With the recent emphasis on 
sustainable energy projects, masses of legacy 
unstructured data are now being re-used to support low-
carbon projects.  Imagine the problem of manually picking 
out 10,000 raster well log images from a mixed bag of 
30,000 images plus other file types. Then manually 
reading and re-typing well names to match and index into 
a well data repository.  Even if undertaking such projects, 
data loading teams would be overwhelmed using 
traditional software tools known today.  ML engineers and 
software developers can greatly improve such tools using 
AI/ML. 

Challenges and Solutions 

Service companies in the industry have set out to tackle 
these challenges: 

1) Automatically separate raster well log image files 
from all other structured or unstructured files. 

2) Automatically extract specific meta-data values from 
the raster well log images to satisfy an index into a 
well data repository. 

3) Present the AI/ML choices to end-users whom can 
quickly and conveniently verify or make adjustments 
to index into a well data repository. 

This has resulted in like-wise solutions: 

1) A machine-learned image-classification model, which 
can (at a high-level of confidence) distinguish raster 
well log images from any other image file. 

2) An enhanced Optical Character Recognition (OCR) 
system to extract meta-data from image files. 

3) Natural Language Processing (NLP) algorithms to 
match extracted values against keyword lists labels 
(f.ex. “Well Name”) and data repository values (f.ex. 
“Bighorn Well 4506”). 

4) A workflow user interface (UI) to bring these all 
together allowing end-users to break the barrier and 
accomplish much more with higher confidence and 
higher quality than before. 

Choosing a Model 

For the challenge of image-classification our ML 
engineers choose a convolutional neural network (CNN) 
to perform supervised training.  CNNs are commonly 
used in solving problems related to computer vision and 
spatial data, such as images.   

For efficiency, we chose to use pre-trained models 
(backbone models), which already have some intelligence 
(meaning pre-trained with a large amount of data).  We 
chose a model pre-trained on Imagenet.  Imagenet is an 
open-source labelled dataset containing over 14 million 
images across over 20,000 classes. 

Such pre-trained models can still be fine-tuned and 
trained furthermore with our own dataset to meet more 
specific goals of well log classification.   

We chose to compare two different pre-trained CNN 
models, VGG16 and InceptionResnetV2 (each further-
more fine-tuned with our own training dataset) ultimately 
picking VGG16 to move forward with. 

 

 
Figure 1 - The architecture of VGG16 1 
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Accumulating a Training Dataset 

In order to accomplish this, we accumulated our own 
training dataset of image files, which had to be accurately 
labeled meaning, we know exactly what they are.  
Supervised learning uses labeled input, which can be fed 
to the model and trained to recognize similar images 
when predicting new/unknown data. 

Sourced from our existing Katalyst Data Management 
(KDM) data repositories, we had a head-start in the 
labelling process, but they still needed to be verified and 
corrected.  We built tools, which allowed us to view these 
images and quickly left/right arrow key a labeled choice.  
We also incorporated clustering techniques to accelerate 
this process and focus training on those specific parts of 
well log images, which identify them as a well log.  Those 
would be the chart measurement pages containing a 
graph with wavy lines running up and down the page.  It is 
that specific type of image, which distinguishes a well log, 
not other report charts or header text, which commonly 
show up in other classes of image files. 

 

 

Figure 2 – Comparison of a well log versus a non-well log 

 

We accumulated approximately 3 million image pages to 
compromise our training set.  Only about 20% have been 
used for well log classification as we expect to add more 
classes in the near future.  The training set must be 
balanced meaning, just as many non-well logs need to be 
used as well logs.  Both log & non-log data sets must 
furthermore contain a balanced set of various styles 
following the proprietary nature of client data.  Clustering 
techniques were again used here to accelerate this 
process. 

A single image file contains many pages, so each file 
must be pre-processed to separate the pages and 
conform each one to have common attributes like 

dimension. This must be done not only for training data 
but also when consuming new/unknown data to predict.  
This entire pre-processing piece was coded and 
automated. 

In the final version, our training data set was comprised of 
roughly 250,000 well log images and a balanced mix of 
250,000 non-well log images.  We also set aside roughly 
25,000 images for validation and 25,000 images for 
testing. 

 

Training the Model 

Another challenge was obtaining high-end Linux 
machines, which not only have Central Processing Units 
(CPUs) but also Graphics Processing Units (GPUs).  
GPUs are responsible for rendering images by performing 
rapid mathematical calculations and in particular, 
performing multiple (millions of) calculations at the same 
time.  Although GPUs are not required to perform model 
training, they greatly accelerate the process turning 
weeks or months of training time into hours or days.  
Using CPUs alone becomes almost impractical.  Even 
with GPUs, training a model can take a significant amount 
of time.  In our case, it took approximately 5 days to train 
(fine-tune) the VGG16 model using 2x 24G NVIDIA 
GeForce RTX 3090 GPUs. 

We used pre-trained weights for most layers, unfroze 
some of the last layers (deleted those pre-trained 
weights) and trained them on our dataset.  We also added 
more layers to improve training accuracy.  It took five 
iterations of model training each time fine-tuning our 
dataset and model architecture to achieve acceptable 
results.  In the final version, we ended up training with 20 
epochs.  Epochs represent the number of times your 
training dataset is passed through the model.  There will 
be a certain number of epochs where the model has 
reached optimal learning. 

In the following TensorBoard report, the blue line 
represents the validation dataset and the orange line 
represents the training dataset.  The x-axis is the epochs 
and the y-axis is the accuracy.  This type of output is 
carefully watched and evaluated as training proceeds and 
gives a good indication when to add or remove epochs. 

 

 

Figure 3 – TensorBoard accuracy report 
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We also attempted to fine-tune a different model 
architecture, Contrastive Language–Image Pre-training 
(CLIP), which is multi-modal combining NLP with 
computer vision.  A main benefit is its ability to be trained 
and predict using text in addition to images.  This is likely 
to be a future initiative.  For CLIP, we did not unfreeze 
any layers (as it is very heavy) but we added more layers.  
Using images alone, it did not outperform VGG16 but we 
suspect with more training, CLIP may become a 
preference. 

 

Meta-Data Extraction 

For the challenge of OCR, we quickly realized that basic 
open-source software was not good enough to accurately 
extract text from tables and cells which is commonly 
found in textual header pages of well logs.  Neither 
Tesseract nor PaddleOCR worked accurately with this 
style of data but we moved forward with PaddleOCR. 

  

Figure 4 – A typical well log header page containing 
meta-data values within tables/cells to be OCR extracted 

Firstly, we attempted to use an object detection model 
called You Only Look Once (YOLO) 2 to filter out the 
boxes with inaccurate results.  Then we fine-tuned a table 
detection model called CascadeTabNet 3 to be used in 
combination with an open-source line detection model 
called L-CNN 4 to significantly improve OCR extraction of 
values from tables and cells with great success. 

The next challenge was how to extract the specific values 
we need to populate a well log inventory.  KDM already 
has a standard (LAS & DLIS) well log loading application, 
which extracts the following attributes: 

UWI, Well Name, Well License, Acquired For Company, 
Logging Company, Log Date, Top/Bottom/Logger TD 
Depths & UOMs, and Sample Rate & UOM. 

We aimed to extract the same attributes from raster well 
log image files.  The business analyzed the data and 
established a list of keywords, which commonly exist as 
identifying labels for each of these values, label 
keywords.  We also already had actual value listings for 
the well header data and company names, value 
keywords.  Combined together, we were able to 
accurately extract label/value pairs to populate directly 
into the same well log loading application (this time using 
images). 

Each piece of extracted text also includes the image pixel 
coordinates, so we were able to show the end-user 
exactly where each extracted value came from while they 
were loading the image files.  This gave them the ability to 
quickly verify the AI/ML choices and even override the 
choice to click directly on the image and choose another 
value if necessary. 

We used a combination of regular pattern matching and 
other NLP methods of both cosine similarity 5 and Natural 
Language Toolkit (NLTK) 6 edit distance algorithms to 
produce fuzzy match scores and rank them by various 
methods such as label + value scoring, label keyword 
priority, page number, location on the page, etc. 

 

 
Figure 5 – A typical well log header page showing where 
the AI/ML picked values were extracted 
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A future consideration for extracting these particular 
values is to use a Large Language Model (LLM).  This is 
what ChatGPT is comprised of where the values are 
extracted in a question/answer type of implementation 
using prompt engineering.  This involves the context of 
words in relation to other words in the full given text as a 
whole. The sustainable energy sector is looking at 
applications for this kind of text extraction in the areas of 
using well logs for reservoir characterization in hydrogen 
and carbon storage, and using well log data to support 
prediction of geomechanical risk in CO2 sequestration 
sites.7 

 

Workflow UI Tools 

It is important to note none of these machine-learned 
models can stand up on their own.  They require a lot of 
algorithms and procedural code to contain them and 
control their inputs and outputs.  Much effort was put into 
building these workflow UI tools with business analysis 
directly from operations teams to purpose fit the KDM 
data ingestion process.  The workflow tools are 
comprised of: 

1) ML Service – headless-service hosting the machine-
learned models constantly running on one or more 
high-spec Linux machines consuming data files and 
outputting results. 

2) Kurator – user interface to interact with the ML 
Service, feed it new/unknown data files, compile the 
AI/ML outputs and pass along to downstream data 
loading applications. 

3) Well Log Loader & KIT – existing data loading 
applications enhanced to present the AI/ML choices 
to data indexers. 

 

We were able to apply the same NLP techniques to 
SEGY textual headers when loading seismic data.  Here 
we focused on Acquired For, Created By, Created Date, 
Category (FIELD vs PROCESSED), Description and 
Coordinate System. 

 

Figure 6 – A typical SEGY textual header showing where 
the AI/ML picked values were extracted 

Conclusions 

The AI/ML technology and workflow tools described have 
been delivered into a production KDM environment 
currently undergoing a pilot project.  Operations teams 
immediately see the benefit in using these tools giving 
them an enhanced ability to do more, better, faster.  
Raster/image well log loading can now be performed at 
the same efficiency as standard log (LAS & DLIS) 
loading.  The expectation is this will lead to engagement 
in previously non-feasible data management projects as 
well as improve quality and quantity of regular/existing 
projects. The business is eager to add more data types 
and extracted data values in the near future. 
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